According to the NIST investigators, the new sensor overcomes many of the difficulties associated with tracegasdetection, a technique also used widely in industry to measure contaminants and ensure quality in manufacturing. A trace level of a particular gas can indicate a problem exists nearby, but manysensorsare only able to spot a specific type of gas, and some only after a long time spent analyzing a sample. The NIST sensor, however, works quickly and efficiently.
This new sensor can simultaneously detect many different trace gases at very fast rates and with high sensitivity, says NIST chemist Kevin Douglass.Its also built from off-the-shelf technology that you can carry in your hands. We feel it has great commercial potential.
The key to the new sensor is the use of radiation atterahertz frequenciesbetween infrared and microwaves. Terahertz waves can make gas molecules rotate at rates unique to each type of gas, which implies the waves hold great promise for identifying gases and measuring how much gas is present. The NIST team has developed the technology to rotate the moleculesin phaseimagine synchronized swimmersand detect the spinning molecules easily as they gradually fall out of phase with each other.
A major hurdle the new technology overcomes is that it is now possible to look at nearly all possible gas molecules instantly using terahertz frequencies. Previously, it was necessary to exposemoleculesto a vast range of terahertz frequenciesslowly, one after another. Because no technology existed that could run through the entire frequency band quickly and easily, the NIST team had to teach their off-the-shelf equipment tochirp.
The sensor sends a quick series of waves that run the range from low frequency to high, sort of like thechirp of a bird call, says Douglass.No other terahertz sensor can do this, and its why ours works so fast. Teaching it to chirp in a repeatable way has been one of our teams main innovations, along with the mathematical analysis tools that help it figure out what gas youre looking at.
The NIST team has applied for a patent on its creation, which can plug into a power outlet and should be robust enough to survive in a real-world working environment.
No comments:
Post a Comment